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From hot-wire anemometer measurements in active-grid wind-tunnel turbulence we
have determined the Reynolds number dependence of the velocity derivative moments,
the mean-squared pressure gradient, χ , and the normalized acceleration variance, a0,
over the Reynolds number range 100 � Rλ � 900. The values of χ and a0 were
obtained from the fourth-order velocity structure functions. The derivative moments
show power-law dependence on Reynolds number and the exponent is the same with
or without shear. In particular, we find the derivative kurtosis, K∂u/∂x ∼ R0.39

λ , and
there is no evidence of the transition that has been observed in this quantity in some
recent work. We find that at high Reynolds numbers, χ and a0 tend to values similar
to those obtained by direct particle tracking measurements and by direct numerical
simulation. However, at lower Reynolds number our estimates of χ and a0 appear
to be affected by the evaluation technique which imposes strict requirements on local
homogeneity and isotropy.

1. Introduction
Describing and explaining the intermittent nature of the small-scale velocity struc-

ture in fully developed turbulent flow continues to pose profound problems for
the experimentalist and theoretician. First observed in velocity traces in the 1940s
(Batchelor & Townsend 1949) and despite over a half century of concentrated effort
(see reviews by Frisch 1995 and by Sreenivasan & Antonia 1997), there is still no
broadly accepted theory or model to describe this phenomenon. Indeed it is still
unclear how universal intermittency is (in the sense of its independence of large-
scale boundary conditions), and whether it is due to the cascade process in which
disturbances at the large scale are amplified with increasing wavenumber (e.g. Frisch
1995), or whether it is due to a more direct coupling between the large and small scales
(e.g. Tsinober 2001). A generally accepted way of describing intermittency is by means
of the kurtosis of the longitudinal velocity derivative, K∂u/∂x ≡ 〈(∂u/∂x)4〉/〈(∂u/∂x)2〉2.
Batchelor & Townsend (1949) observed values greater than 3 (the value of the
kurtosis for a Gaussian distribution) and a number of experiments have shown
(figure 6 of Sreenivasan & Antonia 1997) that K∂u/∂x increases with Reynolds number
Rλ ≡ 〈u2〉1/2λ/ν, where u is the longitudinal velocity component fluctuation, λ is the
Taylor microscale = [U 2〈u2〉/〈(∂u/∂t)2〉]1/2 (where U is the mean velocity) and ν is
the kinematic viscosity. Typical traces of u(t) and ∂u/∂t may be found in figure 2 of
Warhaft (2000), from which the intermittent nature of the velocity is clearly evident.
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Kolmogorov (1941, referred to herein as K41) phenomenology requires that K∂u/∂x

be constant, independent of Reynolds number since K41 postulates that derivative
statistics scale with ν and 〈ε〉 (the average rate of dissipation of the turbulence kinetic
energy) only. The observation that K∂u/∂x depends on Rλ implies that the large-scale
fluctuations play a role in determining the intermittency because Rλ is proportional
to the velocity r.m.s. This in turn suggests a dependence on the way the flow is forced.
Instead, statistical compilations of measurements in various geometries (figure 6
of Sreenivasan & Antonia 1997), indicate a power-law increase, K∂u/∂x ∼ Rn

λ , where
n ∼ 0.35, irrespective of the flow. The apparent lack of dependence on the nature
of the large scales is consistent with the K41 postulate of local isotropy (PLI).
According to PLI, at high Reynolds numbers, as the cascade proceeds from large
to small scales, information on how the flow is forced at the large scales is lost.
The observation that K∂u/∂x increases with Reynolds number is attributed to the
increase in the level of intermittency (an aspect not taken into account in K41),
and is not necessarily in conflict with PLI, although recent work (e.g. Pumir &
Shraiman 1995; Shen & Warhaft 2000) suggests that intermittency and anisotropy
may be related phenomena. The observed power-law increase is also consistent with
phenomenological intermittency models (e.g. Meneveau & Sreenivasan 1991). For
example the log–normal model for energy dissipation predicts K∂u/∂x ∼ R

3µ2/2
λ , where

µ2 is the intermittency parameter (Frisch 1995). Its value (Sreenivasan & Antonia
1997) is around 0.25, yielding K∂u/∂x ∼ R0.38

λ .
Tabeling & Willaime (2002) (see also Tabeling et al. 1996) have challenged the

observed power-law increase in K∂u/∂x by suggesting that subtle variations have been
masked by the coarse variation in Reynolds number in the experiments. Their detailed
measurements in a complex low-temperature helium gas flow produced by counter-
rotating disks shows a transition at around Rλ ∼ 700 (figure 3, Tabeling & Willaime
2002 and figure 4 below). They postulate that the transition is due to worm vortex
breakdown, and suggest that it may be a universal characteristic of turbulence. If
this is indeed the case, their suggestion poses a profound challenge to turbulence
theory. One of the objectives of this paper is to examine the evolution of K∂u/∂x

with Reynolds number by measuring K∂u/∂x over small increments of Rλ in simple
wind-tunnel turbulence.

A related objective is to determine mean-squared pressure gradient and acceleration
variance from the hot-wire measurements. Like the velocity derivative, these quantities
are strongly affected by turbulence intermittency, exhibiting stretched exponential tails
in their probability density functions (Voth, Satyanarayan & Bodenschatz 1998; Voth
et al. 2002). As the Reynolds number increases the intermittency effects become more
and more pronounced. Practical applications (e.g. Shaw 2003) require knowledge on
how the acceleration variance and mean-squared pressure gradient vary with Reynolds
number. Phenomenological models predict (as for the kurtosis) a power-law increase
with Rλ (Voth et al. 2002; Hill 2002a). For example, assuming a log–normal model
for the energy dissipation rate, it can be shown that the normalized acceleration
variance a0 ≡ (1/3)〈aiai〉/ν−1/2〈ε〉3/2 ∼ R

9µ2/16
λ (Voth et al. 2002). For µ2 = 0.25 this

yields a0 ∼ R0.14
λ . In contrast K41 scaling (no intermittency) predicts a0 is a constant,

independent of Reynolds number.
Hill & Wilczak (1995, referred to herein as HW) and (Hill 2002a, b) have re-

examined the earlier work of Heisenberg (1948), Obukhov (1949), Yaglom (1949),
Obukhov & Yaglom (1951) and Batchelor (1951) in which pressure and acceleration
statistics were related to the velocity fluctuations via the Navier–Stokes equations.
HW provide relations that do not rely on the joint Gaussian assumption used in the
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earlier work, a poor assumption in the light of the strong departures from Gaussian
statistics at the small scales. (HW demonstrate, see also the results below, that the
statistics of the small scales are those most relevant to the determination of the
pressure and acceleration variances.) HW assume local isotropy, local homogeneity
and incompressibility only. Their work provides the possibility of comparing direct
numerical simulations (DNS) (Vedula & Yeung 1999; Gotoh & Fukayama 2001)
and direct Lagrangian particle tracer experiments (Voth et al. 1998, 2002) with the
Eulerian measurements taken in wind tunnels. As with the Kurtosis measurements
of Tabeling & Willaime (2002), there is conflicting evidence in this area as well. The
particle tracking measurements of Voth et al. (2002) show a complex dependence
between the acceleration variance and Rλ, with a0 first increasing and then levelling
off at Rλ ∼ 700, a result that appears to be in conflict with simple scaling arguments,
with DNS (Vedula & Yeung 1999), and with HW. A possible connection between the
Voth et al. (2002) results and the intermittency results of Tabeling & Willaime (2002)
has been noted by Hill (2002a).

The HW theory relates the mean-squared pressure gradient, χ ≡ (1/ρ2)〈(∂p/∂xi)
(∂p/∂xi)〉, where ρ is the fluid density and p is the pressure fluctuation, to the velocity
structure functions by

χ = 4

∫ ∞

0

r−3[Duuuu(r) + Dvvvv(r) − 6Duuvv(r)] dr (1)

where Duuuu(r) is the fourth-order structure function of the longitudinal velocity
fluctuation u, Dvvvv(r) is the fourth-order structure function of the transverse velocity
component orthogonal to u, in this paper denoted as v, and Duuvv(r) is the mixed
fourth-order structure function. The flow to be considered is decaying, active-grid
turbulence, supplemented with some data in which there is shear in the direction
transverse to the mean flow. Taylor’s hypothesis is used to convert time series into
spatial (downstream x-direction) series. Thus ∂u/∂x = −U−1(∂u/∂t), etc.

Although the measurement of these fourth-order structure functions by means of
an X-wire configuration appears to be straightforward, there are severe resolution
problems. These will be discussed in detail. HW suggests that some of these difficulties
may be alleviated if only a single wire can be employed for the measurement of χ .
They suggest that

Hχ ≡ 1 +

∫ ∞

0

r−3[Dvvvv(r) − 6Duuvv(r)] dr

∫ ∞

0

r−3Duuuu(r) dr

(2)

may be constant for Rλ greater than a few hundred. Vedula & Yeung (1999)
determined Hχ from DNS and showed that its value approaches a constant value of
approximately 0.65 for Rλ greater than about 200. The utility of a constant value of
Hχ is re-emphasized by Hill (2002b). From (2) it follows that

χ = 4Hχ

∫ ∞

0

r−3Duuuu(r) dr. (3)

Thus according to (3) only a single hot-wire anemometry probe (that measures the
u component) is necessary to determine χ . Hill (2002a) also shows, again assuming
local homogeneity, local isotropy and incompressibility, that the acceleration variance
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is

〈aiai〉 = χ − 35

2
ν

〈(
∂u

∂x

)3 〉
. (4)

Hence 〈aiai〉 can in principle be determined by an X-wire anemometer array, and if
Hχ is constant, by a single component probe. Previous attempts to determine mean-
squared pressure gradient and acceleration variance using hot-wire anemometry have
been made by Pearson & Antonia (2001) and by Hill & Thoroddsen (1997).

This paper, then, has two objectives: first to determine K∂u/∂x in simple wind-tunnel
flows and second to deduce from the Eulerian measurements of velocity in these
flows, the mean-square pressure gradient and the acceleration variance.

2. Apparatus
As in our previous work, the experiments were performed in our two low-

background-turbulence, open-circuit wind tunnels. The smaller tunnel (ST) is
40.7 × 40.7 cm2 in cross-section and 4.5 m long (Sirivat & Warhaft 1983). Using
the active grid (Mydlarski & Warhaft 1996, 1998) we could achieve a maximum
value of Rλ of around 400. The larger tunnel (LT) is 91.4 × 91.4 cm2 in cross-section
and 9.1 m long (Yoon & Warhaft 1990). Here, with the active grid the maximum
value of Rλ was around 750. Although we can obtain higher Reynolds numbers, the
value of the dissipation scale η ≡ (ν3/〈ε〉)1/4 becomes too small to properly resolve
the velocity derivative, see below. To achieve higher values of Rλ with concomitantly
larger values of η we used a shear generator and flow straighteners (Shen & Warhaft
2000). The effect of the anisotropy produced with the shear generator is discussed
below.

Both wind tunnels are geometrically similar. The active grid in LT is almost identical
to that used in ST; but in LT the mesh spacing M is 11.4 cm, which is two and a
quarter times that in the ST. The LT grid has seven grid bars in the vertical direction
and eight in the horizontal (the outermost horizontal grid bars were (1/2)M from
the tunnel walls). The grid in the ST has seven grid bars in each direction, with the
outermost bars in both directions 1M from the walls (Mydlarski & Warhaft 1996,
1998). Thus, although the tunnel cross-sections are both 8M × 8M there is a slight
difference between the geometries of the two grids.

Experiments were performed with the active grid operating in either the
synchronous or the random modes (Mydlarski & Warhaft 1996). In the synchronous
mode the grid operation is parameterized by the Strouhal number St ≡ 2πf M/U

where f is the rotation rate of the bars. For the random mode, there is an added
parameter, fr , which is the frequency at which the direction of rotation is alloted
by an equal-probability binary random variable generator (Mydlarski & Warhaft
1996). f was varied from 0.5 to 2.0 r.p.s. and there was no observed sensitivity of
the results to its variation. Hence St does not play a role in dynamic similarity.
For the random mode fr/f was varied from 10 to 40 with f fixed at 1 r.p.s. There
was a weak dependence on fr/f , for the pressure and acceleration statistics, but the
values of the normalized derivative statistics were independent of this ratio. Because
higher values of Rλ can be achieved in the random mode, we will confine our results
to this case. For the experiments reported here f and fr/f were 1 r.p.s. and 20
respectively.

For dynamic similarity the mesh Reynolds number, RM ≡ UM/ν, fr/f , and x/M

(where x is the downstream distance from the grid) must be the same for the two
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Large tunnel
Small tunnel

No shear No shear With shear

MinRλ MaxRλ MinRλ MaxRλ MinRλ MaxRλ

Rλ 149 396 428 729 452 877
U (m s−1) 2.98 7.26 3.94 7.80 3.72 8.94
〈u2〉1/2/U (%) 6.71 14.5 15.2 18.1 12.1 13.9
〈u2〉/〈v2〉 1.36 1.65 1.19 1.35 2.10 2.32
�(m) 0.109 0.149 0.306 0.377 0.456 0.617
λ(mm) 10.9 5.65 10.7 7.76 15.1 10.6
η(mm) 0.456 0.144 0.263 0.146 0.361 0.181
〈ε〉(m2 s−3) 0.07891 7.78 0.704 7.43 0.198 3.13
−S∂u/∂x 0.505 0.538 0.562 0.575 0.546 0.586
F∂u/∂x 6.17 9.16 9.58 11.4 9.94 13.1
�w/η 0.557 1.76 0.965 1.74 0.703 1.40

Table 1. Various flow parameters for the two tunnels used in the experiments to determine
the logitudinal velocity derivative moments. 〈ε〉 was determined from the expression
15(ν/U 2)〈(∂u/∂t)2〉. � ≡ 〈u2〉3/2/〈ε〉. Min Rλ and Max Rλ are the minimum and maximum values
of Rλ for the various flows. For the shear experiment, the mean shear was approximately same
as in the Shen & Warhaft (2000), i.e. ∂U/∂y ∼ 10 s−1.

tunnels operating in the random mode. Our results show that when they were the
same, the results of all statistics were identical.

The measurements were made using a single component probe for streamwise
derivatives and with an X-array to measure the u and v components simultaneously
for the acceleration and pressure variance measurements. Two different wire diameters
were used: 1.27 µm (platinum–rhodium) and 3.05 µm (tungsten). The ratio of the
sensing element hot-wire length, �w , to its diameter, d , was 200 in both cases. For
the derivative measurements it is necessary to resolve to the order of a Kolmogorov
length scale, η, and the finest wire (1.27 µm) must be used (see below). Our initial
attempts to determine a0 and χ with an X-wire array using the smaller wire resulted
in inconsistencies because of difficulties in producing perfectly straight wires. Their
geometry changed with heating and aging, resulting in measurements that were not
reproducible from one day to the next. Thus for these measurements we used the
3.05 µm wires. The integrands (equation (1)) peak at around 5η–6η and we determined
that the 3.05 µm wire was adequate to resolve these statistics. The spacing between
the two wires in the X-array was 1 mm.

Table 1 lists the flow parameters including the ratio �w/η for the minimum and
maximum Rλ of each particular flow studied for the determination of the derivative
statistics. Table 2 lists the flow parameters for the study used to determine χ and a0.

In all cases TSI probes were used and they were connected to Dantec 55M01
constant-temperature bridges. The wire over-heat ratio was 1.8. The signals were
high-pass filtered to eliminate low-frequency, large-scale disturbances (typically less
than 0.01 Hz) and low-pass filtered to remove high-frequency noise (varying from
2000 to 20 000 Hz depending on the value of Rλ). The data were digitized using a
16 bit A/D converter and typically 107 samples were taken for each data record.
Further details of experimental procedure may be found in Shen & Warhaft (2000)
and Mydlarski & Warhaft (1996, 1998).
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x/M 58.5 67.5

MinRλ Max Rλ MinRλ MaxRλ

(a) Rλ 189 404 168 369
U (m s−1) 2.84 7.62 2.83 8.19
〈u2〉1/2/U (%) 8.60 10.8 7.91 10.2
〈u2〉/〈v2〉 1.42 1.65 1.36 1.64
�(m) 0.147 0.198 0.126 0.187
λ(mm) 11.6 7.34 11.2 7.08
η(mm) 0.430 0.186 0.441 0.181
〈ε〉(m2 s−3) 0.099 2.84 0.089 3.17
�w/η 1.42 3.29 1.38 3.38

(b) Rλ 268 757 249 656
U (m s−1) 3.00 9.23 3.01 8.83
〈u2〉1/2/U (%) 9.15 13.2 8.02 11.1
〈u2〉/〈v2〉 1.15 1.32 1.15 1.31
�(m) 0.261 0.472 0.256 0.440
λ(mm) 14.6 9.35 15.4 10.1
η(mm) 0.455 0.173 0.498 0.200
〈ε〉(m2 s−3) 0.079 3.80 0.055 2.12
�w/η 1.34 3.53 1.22 3.05

Table 2. Various flow parameters used in the experiments to determine Hχ: (a) ST (b) LT.

3. The measurement of kurtosis: sensitivity to probe resolution
and turbulence intensity

Early in our investigation it became apparent that probe resolution played a vital
role in the measurement of the kurtosis. To illustrate this we show measurements
of K∂u/∂x performed in both tunnels (figure 1). In the ST, the Kolmogorov scale
η ≡ (ν3/〈ε〉)1/4 (where ν is the kinematic viscosity and 〈ε〉 ≡ 15(ν/U 2)〈(∂u/∂t)2〉 is the
average turbulence energy dissipation rate) is smaller than in the LT at the same
Reynolds number (table 1).

It is evident (figure 1a) that K∂u/∂x begins to saturate due to resolution limitations
at around Rλ = 400 in the ST and at about Rλ = 700 in the LT. At these values of
Rλ, the ratio of wire length to Kolmogorov length, �w/η, was about 2. In the results
section we will only report derivative data with �w/η � 1.75. The values of �w/η as a
function of Rλ are also shown in figure 1(a).

For the data obtained with the shear generator in place (Shen & Warhaft 2000)
we achieved larger values of η at high Rλ than with the active grid alone. Thus we
were able to extend our results to higher Rλ, while complying with the constraint that
�w/η � 1.75. These data extend the Rλ range to 900. We note (figure 1b) that the power
law for the shear data has the same exponent, but a slightly higher prefactor than for
the decaying turbulence. In figure 1(b) we have fitted the laws K∂u/∂x= 0.89R0.39

λ for
the decaying grid turbulence and K∂u/∂x= 0.94R0.39

λ for the shear turbulence for the
data of figure 1(a). The small difference in prefactor (0.89 vs. 0.94) may be reflecting
the differences of the overall flows. If so, these results suggest that the dependence
of K∂u/∂x on whether the shear is present or not is extremely weak. We note that the
difference is approximately the same as our measurement error, i.e. 0.5 units in K∂u/∂x .

By varying the downstream distance and the mean velocity we were able to vary the
turbulence intensity at a particular Rλ to see how derivative statistics were affected. In
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Figure 1. (a) The velocity derivative kurtosis, K∂u/∂x , as a function Rλ for ST (open circles)
and LT (solid diamonds, no shear and open squares, shear). The fit to the data is discussed
in the text. Also shown is the ratio of the hot-wire length �w to the Kolmogorov length η
(table 1). The horizontal line is at �w/η = 1.75. (b) K∂u/∂x vs. Rλ for the data of (a) for which
�w/η � 1.75. Open circles, no shear, both tunnels. Solid circles, shear, LT. The fit to the data is
K∂u/∂x = 0.89R0.39

λ (no shear) and K∂u/∂x = 0.94R0.39
λ (shear).

figure 2 we show K∂u/∂x and the derivative skewness S∂u/∂x ≡ 〈(∂u/∂x)3〉/〈(∂u/∂x)2〉3/2

as a function of 〈u2〉1/2/U at Rλ ∼ 500. We see no systematic variation, at least up to
a turbulence intensity of 20%.

4. Results
The Reynolds number dependence of the kurtosis

Figure 3 shows normalized third, fourth, fifth and sixth moments of the fluctuating
derivative, ∂u/∂x, as a function of Rλ. In all cases the distinction between the shear
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Figure 2. The derivative skewness (squares) and derivative kurtosis (circles) vs. the turbulence
intensity. Rλ is approximately 500 for all cases, and the measurements were carried out in LT.

Figure 3. The normalized moments: S3 ≡ 〈(∂u/∂x)3〉/〈(∂u/∂x)2〉3/2, K4 ≡ 〈(∂u/∂x)4〉/
〈(∂u/∂x)2〉2, S5 ≡ 〈(∂u/∂x)5〉/〈(∂u/∂x)2〉5/2, and K6 ≡ 〈(∂u/∂x)6〉/〈(∂u/∂x)2〉3. Symbols are the
same as in figure 1(a). The fits to the curves are: S3 = 0.33R0.09

λ ; K4 = 0.91R0.39
λ ; S5 = 0.50R0.63

λ ;

and K6 = 0.62R1.08
λ . (The notation K4 is used interchangeably with K∂u/∂x in this paper).

data and the decaying grid data is very small. The power laws that we fit to the
data are S3 = −0.33R0.09

λ , K4 = 0.91R0.39
λ , S5 ≡ − 〈(∂u/∂x)5〉/〈(∂u/∂x)2〉5/2 = 0.50R0.63

λ

and K6 ≡ 〈(∂u/∂x)6〉/〈(∂u/∂x)2〉3 = 0.62R1.08
λ . The exponents are very close to atmos-

pheric measurements of Antonia, Chambers & Satyaprakash (1981). Their results
extend to Rλ ∼ 104 and they find S3 ∼ − R0.11

λ , K4 ∼ R0.31
λ , S5 ∼ − R0.61

λ and K6 ∼ R1.0
λ .

(Their data are more sparse than ours, and there is significantly more scatter.)
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Figure 4. Comparison of the derivative kurtosis vs. Rλ for the present work (crosses), the
Tabeling & Willaime (2002) experiment (solid circles) and the Pearson & Krogstad (2001)
experiment (open diamonds). Here we do not discriminate between the ST and the LT (with
or without shear), i.e. the crosses are the same set of data as in figure 3 (K4).

As mentioned in the introduction, Tabeling & Willaime (2002 and references therein;
see also Tabeling et al. 1996) have observed a transition at Rλ ∼ 700 of the dependence
of K∂u/∂x on Rλ. Data from figure 3 of their paper are replotted in figure 4, along with
results of Pearson & Krogstad (2001). Notice that the Tabeling–Willaime data show
a rise at Rλ ∼ 500, followed by a pronounced dip at Rλ ∼ 700 (this is more striking
on their linear–linear plot). The Pearson & Krogstad data show an earlier transition,
at Rλ ∼ 400. Our data show no sign of a departure from a power-law dependence in
the range 150 � Rλ � 900. Note the extremely good agreement between Tabeling &
Willaime’s and our data for Rλ � 400.

The data of Pearson & Krogstad (2001) were obtained using conventional hot-
wire anemometry and the probe resolution was good, with �w/η less than 2. Their
flow, however, was complicated, with a checker-board grid arrangement (the so-
called NORMAN grid, Pearson, Krogstad & van de Water 2000) in the centre of a
large (2.7 m × 1.8 m cross-section) wind tunnel. The flow was undoubtedly strongly
inhomogeneous at the large scales. Their observation of the non-monotone evolution
of K∂u/∂x shows that under some circumstances, the small-scale statistics can be
strongly affected by the large-scale boundary conditions. We will return to this in the
discussion. Pearson & Krogstad (2001) attribute the bump they observe to the same
‘mixing transition’ suggested by Tabeling & Willaime (2002).

The Tabeling–Willaime experiments were conducted in a closed low-temperature
helium gas flow. At each end of a cylindrical container the turbulence was generated
by means of counter-rotating disks. The measurement points were spaced away from
the centreline of the cylinder so there would be sufficient mean flow for the hot-wire
anemometers to perform properly. (A mean convection velocity is required since hot
wires operate in a forced convective mode). Undoubtedly the motion of large-scale
flow was complicated. The measurements were made with a probe that was as wide as
it was long. (In conventional hot-wire anemometry the probe sensing element is very
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thin; the probe resolution being set by its overall length; see § 3 above). Although the
experiments were very carefully carried out, and many of the effects of the probe such
as the effects of vortex shedding, turbulence intensity (which was as large as 30% in
some of their measurements) were examined, some issues remain. In particular the
probe diameter was of order η (in conventional hot-wire experiments it is ∼ 0.005η),
and this could affect the nature of the probe interaction with the small eddies. While
we do not know whether this or other factors did indeed complicate their results,
because of the combination of the flow characterics and the probe, we believe that
more work is required before their results can be accepted. In particular probe and
flow effects need to be studied separately.

Whatever the case, it is quite apparent from figure 4 that neither the Tabeling &
Willaime nor the Pearson & Krogstad results are universal.

Deduction of the acceleration variance and the mean-squared pressure gradient
from the hot-wire measurements

As outlined in the introduction, HW have deduced expressions for the mean-squared
pressure gradient, χ , and the acceleration variance, 〈aiai〉, assuming local homogeneity
and local isotropy. Unlike earlier work, the assumption of joint Gaussian probability
distributions for velocity derivatives at two points, is not used. The expressions for χ

and 〈aiai〉 are given in (1) and (4), above.
There are serious difficulties in determining χ and 〈aiai〉 from the HW expressions

because of the difficulty of achieving precise local homogeneity and local isotropy in
experiments. Although there is evidence that at high Reynolds numbers the transverse
and longitudinal structure functions will achieve the same scaling exponents in the
inertial range, a requirement for local isotropy for the second- and third-order
structure functions, the Reynolds number at which this occurs appears to be extremely
high. Thus in shear flows at Rλ ∼ 1000 the scaling exponent of the v structure function
is different to that of u at second (and higher) order (Warhaft & Shen 2002) and even
at Rλ ∼ 104 Dhruva, Tsuji & Sreenivasan (1997) find that the scaling exponent for the
v structure function is slightly smaller than that of u structure function. Equality of
the structure function scaling exponents is better in decaying, nearly locally isotropic,
turbulence than in shear flow (Shen & Warhaft 2002). The effects of differences in
scaling exponents in determining χ and 〈aiai〉 are discussed by Nelkin & Chen (1998).
Moreover HW (see also Nelkin & Chen 1998) showed that in the integral in (1) the
second and third terms nearly cancel, giving rise to further difficulties in determining
χ and 〈aiai〉 (see figure 7 below).

Examples of the fourth-order structure functions of Duuuu(r/η), Dvvvv(r/η) and
Duuvv(r/η) are shown in figure 5, for the present no-shear (figure 5a) and shear
experiment (figure 5b), carried out at almost the same Reynolds numbers (Rλ =421
and 408 respectively). It is quite evident that for the case with shear, the v structure
function is qualitatively different to that of the u structure function, the former
having essentially no scaling range. Because of the pronounced effects of shear on
the inertial range, in the following we will confine ourselves to the decaying grid
turbulence data. Also shown in figures 5(c) and 5(d) are examples of the fourth-order
structure functions at low and high Reynolds numbers (168 and 656 respectively) for
the no-shear case. At the low Rλ the v structure function is qualitatively different to
the u structure function and only at high Rλ do they tend to become similar. So, even
for the no-shear case, we might expect that these differences will affect the estimate
of the Hχ and a0.
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Figure 5. The fourth-order structure functions as a function of r/η. (a) LT, no shear, Rλ = 421;
(b) LT, shear, Rλ = 408; (c) ST, no shear, Rλ = 168 and (d) LT, no shear, Rλ = 656. Open circles,
the longitudinal structure function Duuuu(r/η); solid squares, the transverse structure function
Dvvvv(r/η); and the open diamonds, the mixed structure function Duuvv(r/η).

For the decaying turbulence experiments, figure 6 shows the structure function
ratios Dvv/Duu, Duuvv/Duuuu and Dvvvv/Duuuu, all as functions of r/η, at two Reynolds
numbers, Rλ =168 and 656. The inertial-range plateau for both second- and fourth-
order quantities only occurs at the higher Reynolds number. In the light of this it
is instructive to see how χ, Hχ and a0 determined from these fourth-order structure
functions evolve with Rλ.

Figure 7 shows the total integrand of equation (1) as well as its components,
(r/η)−3Duuuu(r/η), (r/η)−3Dvvvv(r/η) and 6(r/η)−3Duuvv(r/η): in (a) and (b) we compare
these functions at low and high Reynolds numbers, while in (c) and (d) we compare
them at approximately the same Rλ, but from measurements done in the ST and
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Figure 6. Ratios of structure functions. Filled symbols, LT, Rλ = 656; open symbols ST,
Rλ = 168. (a) Circles, Dvv(r/η)/Duu(r/η); (b) diamonds, Dvvvv(r/η)/Duuuu(r/η) and squares,
Duuvv(r/η)/Duuuu(r/η). For (a) the isotropic ratios for the inertial and dissipation ranges are
shown on the figure with straight lines.

LT. Note that the peak of these functions occurs at 5η–6η and the wire resolution is
sufficient to resolve these scales. At smaller r/η we may have some resolution problems.
Our measurements resolve to 2η–3η but tests in which we varied the shapes of the
curves for r/η � 3 showed an insignificant effect on the integral. We note also that
although (r/η)−3Dvvvv(r/η) and 6(r/η)r−3Duuvv(r/η) (equation (1)) are nearly equal in
magnitude, their difference was found to vary systematically with Reynolds number.
From this we were able to calculate the normalized pressure variance, χ/(〈ε〉3/2ν−1/2)
(equation (1)), Hχ (equation (2)) and (1/3)〈aiai〉/(〈ε〉3/2ν−1/2) ≡ a0, the normalized
acceleration variance (equation (4), with χ determined from equation (1)). These are
shown in figures 8(a), 8(b) and 8(c).

All functions increase with Reynolds number. There is a very good overlap between
the measurements done in the small and large tunnels, providing further support
that resolution does not play a role. There appears to be a weak dependence on
x/M suggesting that the method of evaluating these quantities may be sensitive to
homogeneity and other evolving flow characteristics. As mentioned in § 2, there was
also a weak dependence on the mode of operation of the active grid. This dependence
(not shown here) was comparable to the dependence on x/M . Also shown in figure 8
are the direct numerical simulations of Hχ by Vedula & Yeung (1999) (figure 8b) and
the acceleration variance measurements determined by particle tracking techniques
(Voth et al. 2002) and the DNS of Vedula & Yeung (1999) (figure 8c). Hill (2002a) also
presents computations by Gotoh (see Hill’s figure 2) and shows they are consistent
with the Vedula & Yeung (1999) DNS. We discuss the disparities in these results in
the following section.

5. Discussion
We begin with the derivative statistics. The flows investigated here are attempts to

create ideal decaying grid turbulence and ideal homogeneous shear. In the former the
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Figure 7. The integrands of equation (1) for (a) ST, Rλ = 168; (b) LT, Rλ = 656; (c) ST,
Rλ = 348 and (d) LT, Rλ = 360. Left-hand axis, separate components of integrand: circles,
(r/η)−3Duuuu(r/η); squares, (r/η)−3Dvvvv(r/η); diamonds, 6(r/η)−3Duuvv(r/η). Right-hand axis,
full integrand: solid line, (r/η)−3(Duuuu(r/η) + Dvvvv(r/η) − 6Duuvv(r/η)).

objective is to realize isotropy at all scales; in the latter it is to realize homogeneity
in the mean and higher-order moments. Those conditions can only be achieved in
an approximate way in the laboratory. Nevertheless, departures from isotropy (in the
decaying grid turbulence) and from homogeneity (in the homogeneous shear flow)
are not pronounced (Mydlarski & Warhaft 1996; Shen & Warhaft 2000) and the
result is that derivative statistics evolve in a straightforward power-law manner with
Reynolds number (figure 3).

By contrast, the Tabeling & Willaime (2002) experiment and the Pearson
& Krogstad (2001) experiment (figure 4) use flows that appear to be highly
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Figure 8. (a) The normalized mean-squared pressure gradient, χ/(〈ε〉3/2ν−1/2), as a function
of Rλ. (b) Hχ , (equation (2)) as a function of Rλ. Also shown are the DNS values (crosses) of
Vedula & Yeung (1999), supplemented by some of their new computations at high Rλ (Rλ ∼ 400,
Vedula & Yeung, private communication). (c) The normalized acceleration variance, a0, as a
function of Rλ. The crosses are the data of Vedula & Yeung (1999) and the filled and open
diamonds are particle tracking data of Voth et al. (2002) for the transverse and longitudinal
directions respectively. Open symbols ST; filled symbols LT. Circles x/M =58.5; squares x/M =
67.5.

inhomogeneous at the large scales. The level of large-scale inhomogeneity may be
such that it is directly transmitted to the small scales. While this is in contradiction
to the PLI and to the Kolmogorov cascade, it is not unreasonable to expect that
if the large-scale inhomogeneity is sufficiently severe, a direct interaction would be
possible. Thus we conjecture that the bumps observed in the experiments cited above
are peculiar to the particular flows. It would be fruitful to study the effects on
small scales by systematically varying the intensity of large-scale inhomogeneities.
The results of figure 4 clearly indicate that small-scale statistics are flow-dependent
quantities for complex flows. This is generally overlooked in turbulence modelling.

We now return to the disparities in the determination of Hχ , a0 and χ by using the
various experimental and computational techniques (figure 8b, c). It appears that a0

and χ are less universal than derivative statistics, at least to Rλ ∼ 1000. For example
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there are no strong assumptions made in the estimates of Voth et al. (2002) or in
Vedula & Yeung (1999), yet the values of a0 are quite different, suggesting effects of
boundary conditions at low and moderate Reynolds numbers. It is quite possible that
above Rλ ∼ 1000 the results of different experiments (and techniques) might converge.
Indeed, there is a suggestion of this in figure 8(c). It needs to be emphasized that
Rλ =1000 is a very high value, and that the lack of universality up to that value may
present problems for the modelling and design of fluid systems.

The present experimental data evolve with Rλ in quite a different manner to the
Vedula & Yeung (1999) DNS (figure 8b) and the Voth et al. (2002) particle trajectory
measurements (figure 8c) although at the highest Reynolds numbers the magnitudes of
a0 are reasonably consistent with the particle trajectory measurements and the DNS.
The DNS are initialized to be isotropic, and therefore it may be expected that Hχ

would reach its asymptotic value at a lower Reynolds number than in the experiment.
On the other hand, we do not think that the particle trajectory experiments, done
with rotating blades stirring the fluid from above and below (Voth et al. 2002), should
attain local isotropy at lower Reynolds numbers than in grid turbulence. Indeed Voth
et al. (2002) show that even at their highest Rλ(∼ 1000) there is residual anisotropy,
and for low Rλ it is pronounced. Thus we attribute the difference in the evolution
of a0 (figure 8c) between Voth et al. (2002) and the present experiment largely to
the different ways in determining a0: the Voth et al. measurements and analysis do
not rely on the assumption of local isotropy and homogeneity, and therefore should
be reliable at all Reynolds numbers. However, we might expect χ , Hχ and a0 to be
somewhat flow dependent, particularly at low Rλ, and therefore we could expect some
differences between different flows. We note that it is not possible to extrapolate the
subsequent evolution of a0 from either the Voth et al. (2002) data or from the present
set of measurements. Thus neither experiment can answer the question of whether
a0 remains constant or has a weak Rλ dependence at high Rλ. Experiments at much
higher Reynolds number will be needed to address this issue.

6. Conclusions
In this work we have determined the mean-squared normalized pressure gradient,

χ/(〈ε〉3/2ν−1/2), the acceleration variance, a0, and the parameter Hχ from Eulerian hot-
wire measurements using the HW relations ((1) to (4) above). Although we have found
that our estimates are affected by anisotropy and flow boundary conditions at low
Reynolds numbers, at higher Reynolds numbers our values of a0 and Hχ are in
reasonable agreement with results from particle tracking experiments (Voth et al.
2002) and DNS (Vedula & Yeung 1999). Thus we find that Hχ has a value of
approximately 0.5 at Rλ = 800 (figure 8b), while a0 is approximately 4 at Rλ = 800
(figure 8c). Both still appear to be increasing with Rλ.

While the acceleration and pressure fluctuation statistics show Reynolds number
dependences that are a function of flow anisotropy and boundary conditions when
calculated using (1), the velocity derivative moments appear to be unaffected, showing
a power-law evolution that is consistent with a wide variety of previous experiments
(figure 3). A small exception to this occurs in the comparison of the no-shear and
shear statistics (figure 1b). Here the prefactor of the power law is slightly higher for
the shear than the no-shear case. Our results show no evidence of the ‘bump’ or
transition in the derivative moments that has been observed in the experiments of
Tabeling & Willaime (2002).
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